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This paper presents an investigation into the influence of rotation on the laminar 
asymptotic velocity and temperature profiles obtained when fluid flows through 
a vertical tube which rotates about a parallel axis with uniform angular velocity, 
and which is subjected to a uniform temperature gradient. Rotation induces 
secondary free convection flow in the plane perpendicular to the axis resulting 
in non-symmetrical axial-velocity and temperature profiles which modify the 
resistance to flow and rate of heat transfer. The conservation equations are 
solved using a series expansion in ascending powers of the rotational Rayleigh 
number, the resulting solutions being approximate and valid only for low rates 
of heating. 

1. Introduction 
To enable the rotating components of certain machines to operate continuously 

while located within a high temperature environment it is often necessary to 
employ some method of cooling. For example, an improvement in the thermal 
efficiency and power output of a gas turbine may be achieved if the temperature 
of the gas entering the turbine is increased. Unfortunately, present-day materials 
for rotor blades cannot operate successfully at temperatures in excess of 1500 F 
and so, if gas temperatures above this value are envisaged, some method of rotor 
blade cooling is essential. Holzworth (1938) appears to be one of the first people 
to suggest that this problem could be solved by the use of blind radial holes 
situated in the rotor blade and filled with a suitable fluid. Owing to the intense 
centripetal acceleration present, free convection currents occur in the fluid 
causing the warmer fluid to move towards the axis of rotation. This stream of 
warm fluid adjacent to the wall is simultaneously replaced by a central core of 
relatively cool fluid located in the main rotor shaft, resulting in the blade material 
being maintained at a temperature level compatible with its mechanical strength. 
Theoretical analyses of the flow process and heat transfer inside these thermo- 
syphon holes have been carried out by Lighthill (1953) and Leslie (1960), and 
these have largely been verified by the experimental work of Martin & Cohen 
(1954) and Martin (1955). 

The motion of the fluid in the thermosyphon tubes described above is entirely 
due to free convection. In  many non-rotating heat transfer systems the influence 
of free convection (due to the earth’s gravitation) is often neglected in comparison 
with pressure gradients. However, it  is interesting to note that in a gas turbine, 
where the centripetal acceleration may be as high as 104g, the free convection 
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velocities encountered are as high as those usually associated with forced 
convection in non-rotating devices. 

Cooling of turbine rotor blades has also been effected by the forced circulation 
of suitable coolant through internal passages (Alpert, Grey & Flashar 1960), the 
circulation of the fluid being maintained by externally generated pressure 
gradients. Owing to the radial and tangential components of acceleration caused 
by rotation, modifications to this otherwise forced convection process occur. 
This class of problem, where forced cooling of rotating components occurs, is not 
only restricted to the field of gas turbines. The power output from electrical 
machines is to some extent governed by the permissible temperature rise in the 
insulation surrounding the rotor conductors. Although cooling of these con- 
ductors is commonly achieved by the forced circulation of air over the rotor 
periphery, there are obvious advantages to be gained if the heat transfer is 
effected to a suitable coolant flowing inside the conductors themselves. 

It is thus evident that the problem of forced flow through heated rotating 
channels is interesting both academically and practically. The present paper is 
confined to an analysis of one of many possible configurations. This configuration, 
illustrated in figure 1, takes the form of a vertical cylindrical tube rotating about 
an axis parallel to itself with uniform angular velocity. While the tube rotates, 
fluid is pumped through in an upward direction and the tube wall is subjected 
to a uniform temperature gradient. Although the flow in the entry region is of 
significant interest, the present analysis is confined to distances along the tube 
which are larger than the hydrodynamic and thermal entry lengths. 

FIGURE 1. Physical model and co-ordinates. 
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2. Formulation of the problem 
The flow is assumed laminar and, with the exception of density, the fluid 

properties are taken to be constant. If the velocity components at a point X in 
the co-ordinate directions shown in figure 1 are u, v, and w, then since these 
velocities refer to a moving frame of reference, the respective acceleration com- 
ponents at X are given by 

au vau au ~2 

ar ra8 az r 
f, = u-++++- ---2Q~-(r+Hcos8)S1~, 

av V ~ V  av UV 

ar ra8 az r 
fo=u-+-+w-+-+2Qu+H~2sin8 ,  

aw v a w  aw f, = u-+--+w-, 
ar ra6 az (3) 

where S1 is the angular velocity of the tube and H is the distance between the 
axis of rotation and the tube axis. With the exception of terms involving 0, the 
acceleration components above are the same as those in a non-rotating tube. 
The additional terms may be thought of as body forces, similar to gravity, 
producing free convection currents if fluid temperature gradients are present. 
In  order to include the effect of free convection in the basic conservation laws 
density must vary with temperature. This variation is sufficiently small, how- 
ever, to be ignored in all terms except the buoyancy force in the momentum 
equations. 

For the uniformly heated tube considered, if the wall material is of sufficiently 
high thermal conductivity to ignore any circumferential temperature variations, 
the tube wall temperature T, may be expressed as 

where To is the wall temperature a t  the origin and r is the axial temperature 
gradient. For distances along the tube large enough to permit entry effects to be 
ignored, the continuity equation may be satisfied by specifying a dimensionless 
stream function $ as 

where Y is the kinematic viscosity. Because distances well away from inlet 
influences are being considered, the pressure distribution must be of form 

T, = To+rz, (4) 

v(a$/ar) = - v and v(a$/i38) = ru, ( 5 )  

P = F + P ( r ,  @, ( 6) 
where y is the axial pressure gradient and ~ ( r ,  8) a function specifying the distri- 
bution of pressure in the ( r ,  @-plane. 

For this fully developed state the equations expressing conservation of 
momentum with negligible viscous dissipation may be written in the non- 
dimensional form 
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where 

x = r/a, w = aw/v,  € = up€, 

and (r = v / a  the Prandtl number, 
- a3 ap 
4v2p a2 

R=-- the Reynolds number, 

the rotational Rayleigh number, 

B = - - -  Pg7a4 the gravitational Rayleigh number, 
av 

and 
--a2 ap 

2 ~ ~ p v  a2 
s=-- the Rossby number; 

a is the tube radius, a the thermal diffusivity, P the coefficient of expansion, 
p the density and T the local temperature of the fluid. 

In  (7) and (8) the buoyancy forces have been calculated relative to the tube 
wall temperature with the remaining force distribution absorbed into the 
pressure terms. Equation (7) results from the cross-differentiation of the 
momentum equations in the r and 8 directions, thus eliminating the pressure 
terms. 

Since laminar motion of the fluid is considered, heat transfer between adjacent 
layers is due to molecular conduction. The energy equation in dimensionless 

Solutions of (7), (8) and ( 9 )  are subject to the following boundary conditions. 
At the tube wall u = v = w = 7 = 0, and at the tube axis u, v, w, and 7 must 
remain finite. 

3. Solution of the equations 
Although an exact solution of (7),  (8) and ( 9 )  would be extremely difficult to 

find, if indeed possible, an approximate solution may readily be obtained using 
a technique suggested by Lighthill (1949).  Applied to the present problem the 
technique involves the expansion of the non-dimensional velocity and tempera- 
ture fields in ascending powers of a suitable small parameter. It is necessary that 
the parameter selected be small in magnitude for the solutions obtained to be 
valid. 

The technique has been successfully used by Barua (1954) for the determina- 
tion of secondary flows due to rotation in an unheated tube. In  this case the tube 
was considered to rotate with uniform angular velocity about an axis per- 
pendicular to it. Morton (1959) also used the technique to study the influence 
of gravitational free convection in a uniformly heated horizontal tube with 
forced laminar flow. The analysis presented in this paper is similar to that used 
by Morton. However, owing to the influence of tangential as well as radial 
acceleration components in the present problem, the resulting equations are 
more complicated. 
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In  order to solve (7), (8) and (9), @, W, and 7 are expanded in terms of the 
rotational Rayleigh number, the parameter governing the free convection due 
to rotation. Thus we consider 

@ = @o+A@l+A2@,+...,  (10) 

w = WO+AW1+A2W2+ ...) (11) 

7 = To+A71+A27z+....  (12) 

On substitution of (lo)-( 12) into (7)-(9) sets of equations for the zeroth-, first- 
and second-order coefficients are obtained by equating powers of the rotational 
Rayleigh number. Since there can be no flow in the (r,  O)-plane when A = 0, it  
follows that @o = 0. The resulting equations for coefficients up to and including 
second order are as follows. 

Zeroth-order : 
V’W, = -4R, 

v27, = - w,. 
First-order : 

V2W1 = 

Second-order : 

In  (16) and (19) B/A has been used for the acceleration ratio g/HQ2. 
Solution of (13)-(20) is not in itself difficult. However, for solutions of higher 

order the amount of labour required is considerable. Solutions up to second order 
are as listed below. 

Zeroth-order solutions 
W, = R( 1 - x2), 

7 0  = &R(1-x2)(3-x2). (22) 

These expressions are those obtained by Nusselt for forced laminar convection 
in a uniformly heated tube, reported in Goldstein (1957). No account of rotation 
has been taken at this stage. 
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First-order solutions 
$1= 4608x(1-x2)(10-x2)sinB, R 

(23) 

R2 [(381+ 1325a)x- (735+3000c)x3 
71 = 2.212 x 107 

+ (500 + 2 6 0 0 ~ ) ~ ~  - (175 + 1 1 2 5 ~ ) ~ ~  
+ (30 + 210a)x9- (1 + lO~)xl l ]  cos 8 

- BR (211-304x2+108x4- 16x6+x8). (25) 3.686 x 104A 

Second-order solutions 

Because the second-order solutions contain numerical coefficients of an 
unwieldy nature, they have been grouped within summation signs and the actual 
values tabulated in the Appendix. 

R2 sin 28 

s cos e BRsin6 

1 843 x 104 [ d = O  (c2d+1x2d+1)] -4.424 107A [zo (c2e+1x2e+1)] 7 (26) 
+ 7 - p  

(27) 
B2R 

R3 [ i ( JZb + KZb c + LZb a2) xZb] " = 2.123 x 10' b=O 
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4. Effect of rotation on flow resistance and heat transfer 
The pressure loss along a tube, due to viscous shear, is proportional to the 

gradient of the axial-velocity profile at  the boundary. Since the axial-velocity 
profile has been shown to deviate from the parabolic form associated with 
laminar flow in a non-rotating tube, there must be a consequential variation in 
the resistance to flow. 

w 

e = 7 T  X e = o  
FIGURE 2. Non-dimensional axial velocity distribution across tube diameter 8 = 0. 

Fluid: water at 100 O F .  

Typical non-dimensional axial-velocity profiles across a tube diameter 0 = 0 
are shown in figure 2. These curves have been evaluated for 8 = A, the fluid 
considered being water at 100 O F .  The curves are drawn for a range of Reynolds 
number values, with fixed values of the rotational Rayleigh number and accelera- 
tion ratio. These values are listed on the curves. For similar conditions the non- 
dimensional temperature distributions are shown in figure 3. 

Under the influence of the radial component of acceleration the cooler and 
thus less dense particles of fluid tend to move away from the axis of rotation 
causing the portion of the tube furthest away from the axis of rotation to be in 
contact with the relatively cooler fluid. 

The viscous shear experienced by a fluid moving in a conduit is usually 
expressed in terms of a resistance coefficient C, defined by 

where w, is the dimensional mean velocity. The solutions given above result in 
c, = ( - .IWfP) aplaz, (29) 
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the following expression for w, 

w, = 2R/a[B - O.O525(R~l/4608)~- 0*0072B( 1 - 0.0299B)I. (30) 

(31) 
16 

- R[1- 0-2100(RA/4608)2 - 0-0288B( 1 - 0*0299B)]2’ 

Hence 
C -  

For zero rotation and isothermal flow (31) reduces to Cf = 16/R, which is the 
well-known value for the laminar resistance coefficient in a non-rotating tube. 

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
e=, ,  2 e = o  

FIGURE 3. Non-dimensional temperature distribution across tube diameter 8 = 0. 
Fluid: water at 100 O F .  

A further consequence of rotation is a modification of the rate of heat transfer 
from the tube wall to fluid. This is by virtue of the non-symmetrical temperature 
distribution formed, an example of which is illustrated in figure 3. The heat 
transfer rate q across the solid-liquid interface may be written in terms of the 
non-dimensional temperature as 

q = karv (ar,J/ax)z,ldB, (32) so”” 
where k is the thermal conductivity of the fluid. It is usual to express a heat- 
transfer rate in terms of a dimensionless Nusselt number N ,  which for this 
problem may be defined by 

where T, is the mean fluid temperature across the tube section, 
N = q/nk(Tw- Tm), (33) 
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Evaluation of (32) and (34) yields the following expression for N on substitution 
into (33), 

(35) 
[a1 - blB + c1B2 - ( R A / c J ~ ) ~  (el +$la + g1c2)] 

[jl-B/kl(Z1-mlB) - (RA/d1)2 (n1+s1c+t1c2)]’ 
N =  

where a1 = 0.2500, 
bl = 0.0072, 
c1 = 0*0002, 
d1 = 4608, 
el = 0.0328, 
f’ = 0~0000, 
g1 = 0.0018, 

j1 = 0.0417, 
k1 = 3.686 x 104, 
P = 45.60, 

m1 = 1.3631, 
n1 = 0.0133, 
s1 = 0-0035, 
tl = 0~0009. 

With no rotation of the tube (35) reduces to N = 6 if gravitational buoyancy 
is ignored. This is the result obtained by Nusselt, reported by Goldstein (1957), 
for forced laminar convection in cylindrical tubes. 

5. Discussion 
Solutions have been obtained for the velocity and temperature distributions 

for fluid flowing in laminar motion in a uniformly heated vertical tube, when the 
tube is rotating about an axis parallel to itself with uniform angular velocity. 
Owing to the complicated nature of the equations specifying the flow conditions, 
the solutions presented are approximate, being valid only for low rates of 
heating. However, the results do give some indication of the manner in which 
rotation affects the resistance to flow and heat-transfer rate. 

Reynolds number 

FIGURE 4. Typical variation of friction factor with Reynolds number. 
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Figure 4 illustrates the variation of resistance coefficient with Reynolds 
number for values of the rotational Rayleigh number and acceleration ratio 
shown. These curves were evaluated for similar geometric and flow conditions 
as the non-dimensional velocity and temperature profiles shown in figures 2 and 3. 
From figure 4 it  is seen that at a Reynolds number of 100 the resistance coefficient 
is increased by approximately 12.5 % above the value for a non-rotating tube, 
even though a low rate of heat transfer has been considered. Similarly, evalua- 
tions of the Nusselt number for the same range of parameters indicates an increase 
of approximately 5 %  at a Reynolds number of 100. It is seen, thus, that 
percentage increase in resistance is greater than the corresponding increase in 
heat transfer. 

In  this paper, where laminar convection in a rotating vertical tube has been 
considered, three components of convection may be identified. Circulation of the 
fluid through the tube is maintained by an externally generated pressure gradient 
so that forced convection results in a constant value of 6 for the Nusselt number, 
if other convective effects are omitted. Owing to gravitational buoyancy in the 
axial direction this Nusselt number value is modified, the magnitude of the 
alteration being characterized by the gravitational Rayleigh number B. 

Finally, rotational buoyancy due to centrifugal and Coriolis forces causes 
convective currents across a tube section. The centrifugal buoyancy in (35) is 
seen to depend on the product of the rotational Rayleigh number and the 
Reynolds number, whereas gravitational buoyancy is dependent upon the gravi- 
tational Rayleigh number alone. This feature is analogous to the non-rotating 
horizontal tube studied by Morton (1959). In  his work on planetary waves 
Rossby (1949) showed that the ratio of inertia force to Coriolis force was an 
important parameter in rotating flows. This ratio, known as the Rossby number, 
8, thus enables a measure of the importance of the Coriolis buoyancy to be made. 
Although the Rossby number occurs in the velocity and temperature fields for 
solutions up to second order it has no ultimate influence on the heat transfer or 
flow resistance for solutions up to this order. The relative magnitude of centri- 
fugal buoyancy to gravitational buoyancy is proportional to the acceleration 
ratio HQ2/g. Consequently, at high values of this parameter, centrifugal 
buoyancy is expected to be dominant. 

Although this investigation was largely stimulated by problems associated 
with cooling rotating components, where entry length effects are of considerable 
importance, the analysis presented has been restricted to the determination of 
asymptotic profiles and their influence on flow resistance and heat transfer. 

The author would like to express his appreciation to Dr J. E. Wilkinson, 
Department of Applied Mathematics, University College of Swansea, and Mr T. H. 
Davies, Department of Mechanical Engineering, University College of Swansea, 
for their valuable discussions during the preparation of this paper. 
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Appendix 
Numerical coeficients in the second-order solutions for the 

velocity and temperature distributions 

$2 coeficients 
b 

1 
2 
3 
4 
5 
6 
7 

W, coeflicients 

b E,  
0 -0.6148 
1 3.0625 
2 -6.3406 
3 7.0583 

5 1.7125 

7 0.0286 

4 -4.5609 

6 -0.3448 

8 -0'0008 

d E2d+1 

C 2 b  

1.2040 
- 2.0617 

0.1500 
1.1000 

- 0.4250 
0.0343 

- 0.0016 

D2b 

3.7564 

7.5000 

0.5625 
- 0.0600 

0.0018 

- 9.1607 

- 2.6000 

d C2d+l 

0 0.0436 

2 0-1042 

4 0.0117 

6 0.0001 

1 -0.1130 

3 -0.0451 

5 -0.0015 

C 

1 
2 
3 
4 
5 
6 
7 
8 

F2d+1 

Ezc 

-0.1152 
0,3409 

0.3112 

0.0295 
- 0.0024 

0~0000 

- 0.4327 

- 0.1313 

e 

c %+I 

0 1.0327 

2 1-9844 
3 -0.6380 
4 0.1302 
5 -0.0182 
6 0.0015 
7 -0-0000 

1 -2.4926 

e C%+l 
0 2986 

2 3800 
3 -450 
4 30 
5 -1 

1 -6356 

p,, 
- 0.5135 

1.2521 

0-5000 
- 0.1083 

0.0161 
- 0.0013 

0~0000 

- 1.1451 

0 -430.5304 - 79.1716 0 -0.0595 
1 944.0493 158,9949 1 0.1291 

3 329-7889 51.9983 3 0.0413 
4 -68.6998 -13.4996 4 -0.0080 
5 7-6800 1.6799 5 0.0011 
6 -0.2971 -0.0057 6 -0.0001 

7 0~0000 
8 -0.0000 

2 - 781.9909 - 119.9962 2 -0.1039 

- 0.1888 
0.4132 

0-1438 

0.0056 
- 0'0007 
0~0000 

- 0~0000 

- 0'3405 

- 0.0326 

DZC+l 

3.3053 

6-9010 

0.6771 

0.0104 

- 8.1721 

- 2.6042 

-0.1172 

- 0.0003 

i E2i+l 

0 -0.0025 
1 0.0055 
2 -0.0047 
3 0.0022 
4 -0*0006 
5 0~0001 
6 -0.0000 
7 0~0000 

j E2j 

0 -36.5100 
1 52.7500 
2 -19.0000 
3 3.0000 
4 -0.2500 
5 0~0100 
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72 CG 
b 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

ieflicients 

J 2 b  

- 0.0635 
0.1537 

0.1761 
-0.1103 

0.0456 
- 0.0119 

0.0018 
- 0~0001 

0~0000 

-0.1914 

d 

0 .  
1 
2 -  
3 
4 .  
5 
6 
7 

KZO 
- 0.0409 

0.1985 

0.4342 

0.1116 

0.0041 
- 0.0003 

0~0000 

- 0.3998 

- 0.2793 

- 0.0281 

J Z d + l  

- 60.1647 
148.8163 
135.8354 
61.4165 

2.3975 

0.0058 

- 16.4474 

-0.1886 

i 

0 
1 
2 
3 
4 
5 
6 
7 
8 

LZ b 

- 0.1340 
0.6901 
1.5059 
1.8212 

0.6242 
- 0.1789 

0.0287 
- 0.0021 

0~0001 

- 1.3434 

KZd+l 
- 44.5543 

99.4565 
- 85.2048 

37.4124 
- 7.7000 

0.6225 
- 0.0329 

0.0006 

J Z i + l  

- 0.0003 
0.0015 

- 0.0018 
0-0008 

- 0~0002 
0~0000 

- 0~0000 
o*oooo 

- 0-0000 

&i+1 

- 0.1026 
0.1090 

- 040112 
0.0067 

- 0.0024 
0*0006 

- 0~0001 
o*oooo 

- 0~0000 

C 

1 
2 
3 
4 
5 
6 
7 
8 
9 

J z c  

0.0036 
- 0.0096 

0.0107 
- 0.0072 

0.0032 
- 0.0009 

0*0002 
- 0~0000 

0~0000 

Kzc 
0.0523 

- 0.1318 
0-1279 

- 0.0589 
0.0099 
0~0009 

- 0.0003 
0~0000 

- 0~0000 

L z c  

0.1285 

0.4765 

0.1739 

- 0.3508 

- 0.3693 

- 0.0500 
- 0.0082 
- 0.0006 

0~0000 

e J Z , + l  

0 -0.0073 
1 0-0143 
2 -0.0103 
3 0.0042 
4 -0~0010 
5 0~0001 
6 -0.0000 
7 0~0000 
8 -0.0000 
9 0~0000 

&e+1 

- 0.00177 - 0.0821 
0.0762 0.1983 

0.0459 0.1099 

0.0023 0.0079 
- 0.0003 - 0.0013 

0~0000 0~0001 
- 0~0000 - 0~0000 

0~0000 0~0000 

- 0'0932 - 0.1965 

- 0.0132 - 0.0363 

j J Z f  

0 6.3139 

2 3-2969 
3 -0.5278 
4 0.0469 

6 0.0001 

1 -9.1275 

5 -0.0025 
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